Three New Diketopiperazines from a Marine Sponge Dysidea fragilis

 Jing-Yu Su, Yong-Li Zhong, Long-Mei Zeng, Sheng Wei, Qi-Wen Wang, Thomas C. W. Mak, and Zhong-Yuan ZhouJ. Nat. Prod., 1993, 56 (4), 637-642• DOI:
10.1021/np50094a033 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50094a033 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

THREE NEW DIKETOPIPERAZINES FROM A MARINE SPONGE DYSIDEA FRAGILIS

Jing-Yu Su,* Yong-Li Zhong, Long-mei Zeng, Department of Chemistry, Zbongshan University, Guangzhou, Cbina
Sheng Wei, Qi-Wen Wang,
State Key Laboratory of Bio-organic and Natural Products Cbemistry, Sbanghai Institute of Organic Cbemistry, Shanghai, Cbina

Thomas C.W. Mak, and Zhong-Yuan Zhou
Department of Cbemistry, The Chinese University of Hong Kong, Hong Kong

Abstract

Three new polychlorinated diketopiperazines, dysamides A [1], B [2], and C [3], and the known compound 4 have been isolated from a marine sponge Dysidea fragilis collected off Hainan Island. Their structures were established by spectroscopic methods, and complete nmr assignments were made. The absolute configuration and conformation of 1 were determined by X-ray crystallographic diffraction analysis.

Marine sponges of the genus Dysidea have proved to contain many interesting polychlorinated metabolites (1-7). Among them, a diketopiperazine derived from a polychlorinated amino acid has been reported (5). From the marine sponge Dysidea fragilis Montagu (family Dysideidae) collected off Hainan Island, the South China Sea, three new polychlorinated diketopiperazines, named dysamides A [1], B [2], and C [3], along with the known compound 2,3-

$1 \mathrm{X}=\mathrm{CCl}_{3}$
$2 \mathrm{X}=\mathrm{CHCl}_{2}$

3
dihydrodysamide C, were isolated. All are derivatives of N -methyl trichloroleucine. In this paper we report the isolation, structure elucidation, and absolute configuration determination of these compounds.

RESULTS AND DISCUSSION

Dysamide A [1], which was obtained as colorless prisms, mp $118-119^{\circ}$ [from $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ether (1:1)], [α]D $-36.6^{\circ}(c=0.265, \mathrm{MeOH})$, had a molecular formula of $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$, which was established by hreims. The ${ }^{23} \mathrm{C}-\mathrm{nmr}$ spectra showed only seven resonances instead of fourteen, indicating that the molecule is highly symmetric. The multiplicities of each carbon atom were determined by DEPT experiments, which revealed the presence of two methyl, one methylene, two methine, and two quaternary carbons. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ resonance at $\delta 105.35(\mathrm{~s})$ together with a strong ir absorption at $790 \mathrm{~cm}^{-1}$ revealed the presence of trichloromethyl groups (3,8). The presence of two CONMe groups was suggested by a very strong ir band at $1663 \mathrm{~cm}^{-1}$ and a ${ }^{13} \mathrm{C}$ signal at $\delta 160.00(s)$, together with a methyl signal at $\delta 33.59(\mathrm{q})$ and $\delta_{\mathrm{H}} 3.07$ ($2 \times 3 \mathrm{H}, \mathrm{s}$). Interpretation of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY experiments led to a
partial structure: $\mathrm{CH}-\mathrm{CH}-\mathrm{CHMe}-\mathrm{CCl}_{3}$. This molecule is highly symmetric but shows optical activity; thus it should have C_{2} symmetry. Thus, structure 1 , containing a diketopiperazine ring with the two substituents occupying the 1,4 positions, was proposed for dysamide A. It was further confirmed by the ms data, including a base peak at $m / z 301$ due to the β cleavage of the amide function.

The absolute configuration of $\mathbf{1}$ was determined by X-ray crystallographic analysis. As expected, the central molecular skeleton consisted of two planar fragments folded about a line passing through C-1 and C-7, making a dihedral angle of 28.9°. Consequently, the sixmembered ring took a boat conformation. Interestingly, both 3,3,3-trichloro-2methylpropyl substituents occupied flagpole positions; however, their dispositions with respect to the central ring differed considerably, as shown by the torsion angles $\mathrm{N}-1-\mathrm{C}-1-\mathrm{C}-3-\mathrm{C}-4=$ $102.6(5)^{\circ}$ and $\mathrm{N}-2-\mathrm{C}-7-\mathrm{C}-9-\mathrm{C}-10=$ $-179.8(5)^{\circ}$. The absolute configuration of $\mathbf{1}$ was established as $2 S, 4 S, 2^{\prime} S, 4^{\prime} S$.

Dysamide B [2], needles, mp 147-149 ${ }^{\circ}$ [from $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ether ($1: 1$)], $[\alpha] \mathrm{D}$ $+13.7^{\circ}(c=0.117, \mathrm{MeOH})$, has a molecular formula of $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{C}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ as determined by hreims. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum also revealed only seven signals. In the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum, the
singlet at $\delta 105.35(\mathrm{~s})$ in 1 was replaced by a doublet at $\delta 77.29$ (d), accounting for the presence of CHCl_{2} groups instead of CCl_{3} groups (3). The structure 2 for dysamide B was confirmed by eims fragmentation ions at $m / z 265\left[\mathrm{M}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CHMe}-\mathrm{CHCl}_{2}\right]^{+}, 237\left[\mathrm{M}-\mathrm{CH}_{2}-\right.$ $\mathrm{CHMe}-\mathrm{CHCl}_{2}-\mathrm{CO}^{+}$, and 168 $\left[\mathrm{M}-\mathrm{NMe}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHMe}-\right.$ $\left.\mathrm{CHCl}_{2}\right]^{+}$.

Dysamide C [3], needles, mp 196-197 ${ }^{\circ}$ [from $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ether (1:2)], $[\alpha] \mathrm{D}-7.3^{\circ}(c=0.041, \mathrm{MeOH})$, had a molecular formula of $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ established by hreims. The ir spectrum showed intense absorptions at 1692 , 1637 (amides), and $774\left(\mathrm{CCl}_{\mathrm{a}}\right) \mathrm{cm}^{-1}$. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum contained fourteen carbon resonances, most of them revealed in pairs. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ indicated the presence of $2 \times \mathrm{CCl}_{2}$ and $2 \times$ CONMe. In addition, vinyl proton signals at $\delta 5.622(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz})$ and $6.312(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz})$, together with ${ }^{13} \mathrm{C}$ resonances at $\delta 132.3$ (s), 133.3 (s), 123.2 (d), and 122.3 (d), indicated the presence of two trisubstituted double bonds in the molecule. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum showed cross peaks between $\mathrm{H}-3$ at $\delta 5.622(\mathrm{H}-3)$, and $\mathrm{H}-4$ at 4.863, which was further correlated to a doublet at $\delta 1.484(5-\mathrm{Me})$. Similarly, the connectivities $\boldsymbol{\delta} 6.312\left(\mathrm{H}-3^{\prime}\right)-3.842$ (H-4')-1.471 (H-5') in the other part of

Figure 1. A perspective view of the structure of the molecule of dysamide \mathbf{A} [1] showing its absolute configuration and the arom numbering scheme.
the molecule were found. Thus, the location of the two olefinic bonds was established at $\mathrm{C}-2$ and $\mathrm{C}-2^{\prime}$. Based on the data shown above and the eims fragment ions at $m / z 421[\mathrm{M}-\mathrm{Cl}]^{+}, 385[\mathrm{M}-\mathrm{H}-$ $2 \mathrm{Cl}^{+}(100 \%), 339\left[\mathrm{M}-\mathrm{CCl}_{3}\right]^{+}$, and $82\left[\mathrm{CCl}_{2}\right]^{+}(96 \%)$, the structure of dysamide C was determined as 3 . The characteristic fragment ion peak at m / z 339 was considered to arise from the β cleavage of the olefinic bonds.

The stereochemistry of the two double bonds could be determined in comparison with the chemical shifts between $\mathrm{H}-3$ and H-3'; H-4 and H-4'. The resonance of $\mathrm{H}-3^{\prime}$ was lower field than that of $\mathrm{H}-3$; this was due to deshielding by the amide carbonyl group. To the contrary, the $\mathrm{H}-4$ signal resonated in a lower field than that of $\mathrm{H}-4^{\prime}$ due to the same effect. Apparently, these two olefinic bonds are in the opposite configuration as shown.

The hreims established a molecular formula of $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ for the fourth compound. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ and ir spectral data were consistent with the known 2,3-dihydrodysamide C from the sponge Dysidea berbacea (7), except for the melting point (which for our compound was 30° higher than that reported). No data are available concern-
ing the relative and absolute configurations about three chiral centers.

EXPERIMENTAL

General experimental procedures.All nmr experiments were performed on a Bruker AMX-600 (600 MHz) spectrometer, using TMS as internal standard. Ms was measured with either a VG ZAB-HF-3F or a MAT-731 mass spectrometer. Ir spectra were recorded on a Nicolet SDX FT-IR spectrometer. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. Preparative hple was carried out by using μ Porasil SiO_{2} column with uv detection.

Biological material.-The sponge D. fragilis was collected off Hainan Island, China. A voucher specimen (No. 91-21) was deposited in the Research Center of Organic National Products, Zhongshan University, Guangzhou, China.

Extraction and isolation.-Chopped sun-dried specimens (1.5 kg) were extracted three times with EtOH at room temperature. The concentrated extract was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The ErOAc-soluble fraction (57 g) was subjected to vacuum liquid chromatography on Si gel H with solvent mixtures of increasing polarity from petroleum ether to EtOAc.

The fraction eluted with 15% EtOAc/petroleum ether contained crude 2,3-dihydrodysamide C , from which 3 g of pure compound (5.26%) was obrained upon crystallization from $\mathrm{Me}_{2} \mathrm{CO}$ petroleum ether ($1: 1$). The mother liquor, after separation of 2,3-dihydrodysamide C, was subjected to a repeat of vlc procedure using $\mathrm{Et}_{2} \mathrm{O}$-petroleum ether- $\mathrm{Me}_{2} \mathrm{CO}$ (25:75:1) as eluent to give a white solid, which was further purified by pre-

Table 1. ${ }^{13} \mathrm{C}$-nmr Data for Compounds 1-3 and 2,3-Dihydrodysamide C.

Carbon	Compound			
	1	2	3	2,3-Dihydrodysamide C
C-1	160.00(s)	185.78 (s)	159.5(s)	159.67 (s)
C-1'	160.00 (s)	165.78(s)	160.0 (s)	165.37 (s)
C-2	61.85 (d)	60.03 (d)	132.3 (s)	131.65 (s)
C-2'	61.65 (d)	60.03 (d)	133.3 (s)	61.87 (d)
C-3	38.95 (t)	37.54 (t)	123.2 (d)	123.68 (d)
C-3'	38.95 (t)	37.54 (t)	122.3 (d)	37.55 (t)
C-4	52.03 (d)	40.13 (d)	52.3 (d)	51.34 (d)
C-4'	52.03 (d)	40.13 (d)	53.4 (d)	51.42 (d)
C-5	17.87 (q)	15.47 (q)	18.2 (q)	18.36 (q)
C-5'	17.87 (q)	15.47 (q)	18.0 (q)	17.51 (q)
C-6	105.35 (s)	77.29 (d)	104.0(s)	104.05 (s)
C-6'	105.35 (s)	77.29 (d)	102.8 (s)	105.05 (s)
NMe	33.59 (q)	32.89 (q)	31.3 (q)	31.16 (q)
NMe	33.59 (q)	32.89 (q)	34.7 (q)	33.78 (q)

Table 2. ${ }^{1}$ H-nmr Data for Compounds 1-3 and 2,3-Dihydrodysamide C.

Proton	Compound			
	1	2	3	2,3-Dihydrodysamide C
H-1	-	-	-	-
H-1 ${ }^{\prime}$	- -	-	-	-
H-2	$\begin{aligned} & 4.00(\mathrm{dd} \\ & 7.5,6.5) \end{aligned}$	$\begin{aligned} & 3.89(\mathrm{dd}, \\ & 10.1,5.3) \end{aligned}$	-	4.07 (t, 7.0)
H-2'.	$\begin{aligned} & 4.00(\mathrm{dd}, \\ & 7.5,6.5) \end{aligned}$	$\begin{aligned} & 3.89(\mathrm{dd}, \\ & 10.1,5.3) \end{aligned}$	-	-
$\mathrm{H}_{2}-3$	2.53 (dddd,	2.20 (ddr,	5.62 (d, 9.7)	5.69 (d, 9.5)
$\mathrm{H}_{\mathrm{b}}-3$	$\begin{aligned} & 1.83(\mathrm{dt}, \\ & 14.5,7.5) \end{aligned}$	$\begin{aligned} & 1.69(\mathrm{ddt}, \\ & 10.1,6.3,5.1) \end{aligned}$	-	-
$\mathrm{H}_{2}-3^{\prime}$	$\begin{aligned} & 2.53 \text { (dddd, } \\ & 14.5,6.5,2.4,2.3 \text {) } \end{aligned}$	$\begin{aligned} & 2.20 \text { (ddt, } \\ & 8.1,6.3,5.3) \end{aligned}$	6.31 (d, 10.6)	2.51 (dd, 14.2, 7.0)
$\mathrm{H}_{\mathrm{b}}-3^{\prime}$	$\begin{aligned} & 1.83(\mathrm{dt}, \\ & 14.5,7.5) \end{aligned}$	$\begin{aligned} & 1.69 \text { (ddt, } \\ & 10.1,6.5,5.1 \text {) } \end{aligned}$	-	1.77 (dt, 124.2, 7.0)
H-4	3.02 (m)	2.58 (m)	4.86(m)	5.20 (m)
H-4'	3.02 (m)	2.58 (m)	3.84 (m)	2.74 (m)
H-5	1.43 (d, 6.5)	1.22 (d, 6.6)	1.48 (d, 6.6)	1.38 (d, 6.5)
H-5'	1.43 (d, 6.5)	1.22 (d, 6.6)	1.47 (d, 6.6)	1.38 (d, 6.5)
H-6	-	6.20 (d, 2.9)	-	-
H-6'	-	6.20 (d, 2.9)	-	-
NMe	3.07 (s)	3.01 (s)	3.43 (s)	3.11(s)
NMe	3.07 (s)	3.01 (s)	3.28 (s)	3.25 (s)

Table 3. Data Collection and Processing Parameters for Compound 1.

Table 4. Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Temperature Factors ($\AA^{2} \times 10^{4}$) for Compound 1.

Arom	*	y	z	$U_{\text {aq }}{ }^{2}$
$\mathrm{Cl}-1$	1583(2)	2057(2)	-1444(1)	812 (4)
$\mathrm{Cl}-2$	2472(2)	1565 (2)	728(1)	833 (4)
$\mathrm{Cl}-3$	-198(1)	3374 (3)	-52(1)	801 (4)
CI-4	2316 (2)	6280 (3)	5885 (1)	897 (4)
Cl-5	2027 (2)	3279(3)	6185 (1)	803 (4)
$\mathrm{Cl}-6$	-348(1)	4754(3)	4736 (1)	738 (4)
O-1	3810(3)	8196(4)	1014 (2)	577 (5)
O-2	6080(3)	4515 (4)	3914 (3)	664 (5)
N-1	5435 (4)	5000	2195 (3)	474 (5)
N-2	3887 (4)	7444 (4)	2676(3)	496(5)
C-1	4400(4)	5763 (4)	1350(3)	428 (5)
C-2	4022 (4)	7252(4)	1670(3)	417 (5)
C-3	2858 (4)	4919(5)	932 (3)	491(5)
C-4	2875 (4)	4163(4)	-101(3)	430 (5)
C-5	2489 (5)	5202(5)	-1000(4)	751 (5)
C-6	1745 (4)	2894(5)	-203(3)	493(5)
C-7	4126 (4)	6304(4)	3431 (3)	457 (5)
C-8	5305 (4)	5199 (4)	3202 (3)	476(5)
C-9	2527 (4)	5638(5)	3592 (3)	509(5)
C-10	2690 (4)	4403 (4)	4387 (3)	492 (5)
C-11	2348 (6)	2981(5)	3852 (4)	768 (5)
C-12	1708(5)	4662 (5)	5230 (3)	512(5)
C-13	6445 (5)	3866 (5)	1918(4)	645 (5)
C-14	3412 (5)	8833 (5)	3010(4)	701 (5)

${ }^{2} U_{e q}$ defined as one third of the trace of the orthogonalized U tensor.
parative tic over SiO_{2} - G with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - EtOAc ($40: 1$) as eluent to yield dysamide $\mathrm{C}[3]$ (30 mg) (0.0526\%).

The more polar fractions eluted with 50% EtOAc/petroleum ether were subjected to vlc over Si gel H with $\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}$ (15:1). Pure dysamide A [1] was obtained as colorless prisms (100 mg). The mother liquor, after separation of 1, was purified by hple [EtOAc-petroleum ether (1:1)] to give dysamide B [2] (80 mg).

Dysamide A [1].—Prisms: mp 118-119 ${ }^{\circ}$ [α]D $-36.6^{\circ}(c=0.265, \mathrm{MeOH})$; ir $(\mathrm{KBr}) v \max 1663$ (v. strong), $790,780(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{2}\right)$ see Table $1 ;{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table 2; eims m / z (rel. int. \%) $[\mathrm{M}]^{+} 460(5), 425$ (44), 389 (35), 355 (25), 301 (100), 271 (72), 265 (78), 237 (60), 201 (54), 175 (45), 141 (70); hrms m/z 459.9590 (calcd for $\mathrm{C}_{14} \mathrm{H}_{20}{ }^{35} \mathrm{Cl}_{5}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{2}$, 459.9621).

Dysamide B [2].-Needles: mp 147-149 ; [α]D $13.7^{\circ}(c=0.117, \mathrm{MeOH})$; ir $(\mathrm{KBr}) v$ max 1662 (vs), $760(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ see Table $1 ;{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table 2; eims m / z (rel. int. $\%$) $[\mathrm{M}]^{+} 392(8), 355$ (17), 265 (100), 237 (97), 168 (70), 141 (33); hrms m/z 392.1367 (calcd for $\mathrm{C}_{14} \mathrm{H}_{22}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{2}, 392.1400$).

Dysamide C [3].-Needles: mp 196-197 ${ }^{\circ}$;
$[\alpha] \mathrm{D}-7.3^{\circ}(c=0.041, \mathrm{MeOH})$; ir $(\mathrm{KBr}) \nu \max$ $1692,1637,1354,774(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right)$ see Table 1; ${ }^{1} \mathrm{H}$ nmr see Table 2; eims m / z (rel. int. \%) [M] ${ }^{+} 456(5), 421(18), 385$ (100), 349 (14), 339 (33), 220 (24), 82 (96); hrms m/z 455.9313 (calcd for $\mathrm{C}_{14} \mathrm{H}_{16}{ }^{35} \mathrm{Cl}_{5}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{2}$, 455.9302).

2,3-Dibydrodysamide C.-Needles: mp 135136 ${ }^{\circ}$; $[\alpha] \mathrm{D}-156.5^{\circ}\left(c=0.232, \mathrm{CHCl}_{3}\right),{ }^{13} \mathrm{C}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$ see Table 1; ${ }^{1} \mathrm{H} \mathrm{nmr}$ see Table 2; eims m / z (rel. int. \%) $423\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$(13), 387 (100), 351 (9), 339 (16), 152 (17), 82 (42); hrms $[\mathrm{M}-\mathrm{Cl}]^{+} m / z 422.9756$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{18}{ }^{35} \mathrm{CL}_{4}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{2}, 422.9774$). Anal. found C $37.06, \mathrm{H} 3.94, \mathrm{~N} 6.06$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$, C 36.63, H 3.95, N 6.10 .

X-RAY STRUCTURE ANALYSIS OF DYSAMIDE A^{1} [1].-Diffraction measurements were made on a Siemens P4 diffractometer (9), and inten-

[^0]sities were recorded at 20° and processed with the learnt-profile procedure (10) (Table 3).

Direct phase determination guided by negative quarters yielded the positions of all non-hydrogen atoms in the molecule, which were refined anisotropically. The hydrogen atoms were introduced at their idealized positions (C-H fixed at $0.96 \AA$) using the penultimate difference map as a guide and included in structure-factor calculations with assigned isotropic thermal paramerers; the methyl groups were treated as rigid and the hydrogen atoms were allowed to ride on their respective parent carbon atoms. The absolute configuration of the molecule (Figure 1) was established by refining a parameter η that multiplies all $\Delta f^{\prime \prime}$ values (the imaginary components of the atomic scattering factors) (11). The refined value $\eta=1.56$ (9) strongly indicates that the absolute configuration is correctly described by the set of atomic coordinates listed in Table 4.

All computations were performed with the SHELXTL-PC package (12). The R indices and other parameters at convergence of the leastsquares refinement are listed in Table 3. The final atomic parameters of the nonhydrogen atoms are given in Table 4.

ACKNOWLEDGMENTS

The specimen of D. fragilis was identified by Dr. Jin-he Li. Research at the Zhongshan University was supported by grants from the National Natural Science Foundation and National Education Committee of China. We are grateful to Chen-hui Zeng of Massachusetts Institute of Technology for hrms measurements.

LITERATURE CITED

1. S. Carmely, T. Gebreyesus, Y. Kashman,
B.W. Skelton, A.H. White, and T. Yosief, Aust. J. Chem., 43, 1881 (1990).
2. T. Gebreyesus, T. Yosief, S. Carmely, and Y. Kashman, Tetrahedron Lett., 29, 3863 (1988).
3. K.L. Erickson and R.J. Wells, Aust. J. Chem., 35, 31 (1982).
4. C. Charles, J.C. Braekman, D. Daloze, and B. Tursh, Tetrabedron, 36, 2133 (1980).
5. R. Kazlauskas, P.T. Murphy, and R.J. Wells, Tetrabedron Lett., 4945 (1978).
6. C. Charles, J.C. Braekman, D. Daloze, B. Tursch, and R. Karlsson, Tetrabedron Lett., 1519 (1978).
7. R. Kazlauskas, R.O. Lidgard, R.J. Wells, and W. Vetter, Tetrabedron Lett., 3183 (1977).
8. N.B. Colthup, L.H. Daly, and S.E. Wiberley, "Introduction to Infrared and Raman Spectroscopy," Academic Press, New York and London, 1964, p. 316.
9. R.A. Sparks, in: "Crystallographic Computing Techniques." Ed. by F.R. Ahmed, Munksgaard, Copenhagen, 1976, p. 452.
10. R. Diamond, Acta Crystallogr., Sect. A, 25, 43 (1969).
11. D. Rogers, Acta Crystallogr., Sect. A, 37, 734 (1981).
12. G.M. Sheldrick, in: "Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases." Ed. by G.M. Sheldrick, C. Krüger, and R. Goddard, Oxford University Press, New York, 1985, p. 175.

Received 24 August 1992

[^0]: ${ }^{1}$ Atomic coordinates for this compound have been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EZ, UK.

